Biotechnology: Processes

DNA Sequencing

Contributors

Ben Whitten

tutorial.png

one.png
What is DNA sequencing?
Slide1.jpeg

DNA sequencing refers to the methods and technologies which are used in order to determine the order of nucleotide bases in a DNA molecule, and allows us to perform a thorough analysis of DNA as it provides us with highly comprehensive information: the nucleotide sequence.


There may be a number of survival benefits in identifying the nucleotide sequence of DNA, for example, genes that increase drought resistance or salt tolerance in plants may be identified and studied. Sequencing genes of different species has also assisted scientists in determining genetic relatdness and evolutionary links.


DNA sequencing used to be done manually, called Sanger sequencing, but is now done automatically in a process called next-generation sequencing.

two.png
What is Sanger sequencing?
Slide2.jpeg

The Sanger method, also referred to as dideoxynucleotide sequencing or chain-termination sequencing, is based on the use of dideoxynucleotide triphosphates (ddNTPs) in addition to the normal triphosphates (dNTPs) found in DNA. ddNTPs are highly similar nucleotides, except they contain a hydrogen group (H) on the 3’ carbon instead of a hydroxyl group (OH). These modified nucleotides, when integrated into a DNA sequence, prevent the addition of further nucleotides, thus stopping the elongation of the DNA chain. This occurs as a phosphodiester bond cannot form between the dideoxynucleotide and the next incoming nucleotide and thus the DNA chain is terminated.


  1. The region of DNA to be sequenced is identified, cut and amplified, then heated and denatured to   produce single-stranded template DNA

  2. Template DNA, primer, DNAP, all 4 types of dNTPs and one type of dyed ddNTP are added into the reaction mixture

  3. The sequencing DNA primer is annealed to single-stranded DNA at 3’ end of original strand, providing starting sequences for synthesis

  4. DNA polymerase extends the new strand by attaching complementary dNTPs in the 5’ to 3’ direction

  5. When a dideoxynucleotide that has been coloured with fluorescent dye attaches at random, the newly synthesised strand terminates (the ddNTP prevents formation of phosphodiester bond)

  6. By performing four separate reactions, four separate sets of chain-terminated fragments are produced

  7. Following termination, heating to denature the partially double-stranded molecules releases the   single-stranded chain termination molecules of the various lengths from their templates

  8. They can then be separated using gel electrophoresis – the nucleotides (different colours) run in   separate lanes

  9. As gel electrophoresis proceeds, a laser scans across the bottom of the gel, detecting the different dyes and revealing the base sequence – terminated strands line up from smallest to largest

  10. The sequence of the original region of DNA is finally deduced by examining the relative positions of the dideoxynucleotide chain termination products in the four lanes of the denaturing gel

Topic Menu
DNA Tools, Techniques and Vocabulary
Polymerase Chain Reaction (PCR)
Gel Electrophoresis
Microarrays
DNA Sequencing

Want your ATAR notes to empower over 77,000 students per year?

Logo-New-Large.png

Join the Team.
Empower Education.

three.png
What is next-generation sequencing?

Sign Up for Free to Read More 

Get instant access to all content and subscribe to our weekly email list on study tips, opportunities and other free resources. 

It only takes a minute...

Slide3.jpeg

Next-generation sequencing applies the same principles as the Sanger method, but the technology is more advanced and efficient. The three basic steps are DNA preparation, sequencing and analysing.

  1. DNA preparation: DNA is isolated and purified, then cut into 300bp fragments. The fragments are then amplified using a PCR type method to create massive numbers of identical copies. Resulting fragments are single-stranded. The different types of fragments are placed into unique wells and barcoded.

  2. Sequencing: The multi-well plate contains the assorted fragments. In each well, modified versions of the four nucleotides wash over the mixture. The nucleotides hydrogen bond to the DNA template strand according to base pairing rules. Each nucleotide has one of four fluorescent tags attached. The tags indicate the positions and thus the order   of the four nucleotides. A terminating set of nucleotides is also in the mix, preventing further elongated. Each time a chemically tagged nucleotide attaches to the template strand, there is a flash of light and this is   recorded.

  3. Data analysis: The recorded light flashes reveal the sequence of nucleotides of the template strand in each well. The sequencing software identifies the nucleotides by the order of the colours   recorded.

four.png
Comparing NGS and Sanger sequencing
Slide4.jpeg

In both NGS and Sanger sequencing, DNA polymerase adds fluorescent nucleotides one by one onto a growing template strand. Each incorporated nucleotide is then identified by its fluorescent tag, and one colour represents one nucleotide.


The main difference between the sequencing methods is the number of DNA sequenced at once; one molecule versus many.


The Sanger method only sequences one DNA fragment at a time, whereas NGS sequences hundreds to thousands of genes at one time.

five.png
Slide5.jpeg
six.png
Slide6.jpeg
157-seven.png
Slide1.jpeg
156-eight.png
Slide8.jpeg